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Abstract— The ability to autonomously organize and sort
objects in semi-structured environments is a fundamental step
toward intelligent robotic automation in logistics, warehousing,
and manufacturing. This paper presents an end-to-end robotic
sorting system that seamlessly integrates perception, motion
planning, and decision-making to efficiently arrange items on
a structured shelf. Utilizing a Franka Emika Panda robotic
arm and an Intel RealSense D415 camera, our system detects
and localizes books through color-based segmentation and in
real-world conditions. A minimum-swap sequence optimization
approach determines the most efficient sorting order while
minimizing redundant movements. The system dynamically up-
dates its understanding of the workspace, adapting to variations
in object placement. The proposed methodology demonstrates
robust object detection, efficient manipulation, and adaptive
decision-making. This work paves the way for scalable and
adaptable robotic solutions in industrial automation.

I. INTRODUCTION

The process of organizing and arranging physical
objects within our daily workspaces may appear to be a
straightforward task. However, it inherently involves a series
of high-level cognitive and motor functions. These include
the ability to prioritize the order in which items should be
placed, effectively assessing and accommodating spatial
constraints to ensure optimal organization, and executing
dexterous manipulation to precisely position and handle
objects with the required level of control and accuracy.

Replicating human-like manipulation in semi-structured
environments remains a significant challenge, requiring the
seamless integration of perception, planning, control, and
decision-making. This project addresses the problem of
automated item sortation in constrained indoor spaces using
a Franka Emika robotic arm. The task involves detecting
objects on a two-row shelf, generating collision-free motion
plans to grasp and relocate items in place, and dynamically
updating the system’s understanding of the workspace
using color-based perception. Through this project, we
hope to gain insights into the viability of robotic arms for
sortation and the challenges they pose in semi-structured
environments like warehouses.

Hence, this project would contribute to advancing robotic
automation in logistics, warehousing, and manufacturing by
enhancing autonomous sortation in semi-structured environ-
ments. Improved perception, planning, and manipulation ca-
pabilities can streamline workflows, reduce reliance on man-
ual labor, and increase operational efficiency. The insights
gained could inform the development of more adaptable
robotic systems for real-world industrial applications.

II. RELATED WORK
A. Perception in cluttered environments

Color thresholding remains a computationally lightweight
method for object segmentation in controlled lighting,
as demonstrated in warehouse automation systems [2].
However, its limitations in dynamic scenes have spurred
hybrid approaches, such as combining thresholding with
depth sensing for grasp-point estimation. ArUco [1]
markers, widely used for pose estimation and spatial
anchoring, offer reliable localization in structured shelves,
reducing cumulative errors in repetitive tasks.

Deep learning-based object detection models, such as
YOLOVvV7 [3] and Mask R-CNN [4], have demonstrated ro-
bustness in cluttered scenes by leveraging large-scale datasets
for feature extraction and segmentation. Depth fusion tech-
niques, combining RGB data with point clouds from stereo
cameras or LiDAR, further enhance object discernment in
occluded environments.

B. Motion Planning and Obstacle Avoidance

Sampling-based planners like RRT* and PRM* dominate
high-DOF manipulator motion planning due to their
probabilistic completeness in configuration spaces. Recent
work integrates real-time sensor data with incremental
planning, enabling dynamic obstacle avoidance without
replanning overhead. For the Franka arm, optimization-based
controllers have proven effective for trajectory smoothing in
tight spaces.

Moveit [5] is a popular manipulation framework that pro-
vides various functionalities like motion planning, collision
detection, avoidance, etc. It has various motion planners such
as: OMPL (Open Motion Planning Library), Pliz Industrial
Motion Planner, SBPL (Search-Based Planning Library) etc.
We can use these planners for the Franka arm for generating
trajectories in tight and confined spaces.

C. Integrated Autonomous Systems

Recent work on enabling integrated autonomy has
emphasized the importance of decision-making and the
decomposition of high-level goals into actionable sub-tasks.
This decomposition is crucial for allowing robots to perform
complex tasks in dynamic environments, particularly in
industrial applications such as sorting, manipulation, and
assembly.

Finite State Machines (FSMs) are based on a set of
discrete states, each representing a specific action or



behavior, with predefined transitions between states [7].
These transitions are triggered by certain conditions or
inputs, such as sensory feedback. While FSMs are effective
for well-defined tasks in controlled environments, as the
number of states and transitions grows, especially in
dynamic, embodied robotic systems, they face scalability
challenges.

To address some of these limitations, Behavior Trees
(BTs) have emerged as a more flexible alternative for
decision-making in autonomous systems [7]. Unlike FSMs,
which treat all states and transitions as equally important,
BTs focus on the status of actions—whether they are
running, succeeding, or failing. The transitions between
these actions are implicit. and dictated by the hierarchy
of the tree and the status of the current task. While this
provides an effective way to scale, the structure of the
tree can become difficult to navigate when the tasks grow
in complexity or when unexpected events require drastic
changes in behavior.

The rise of Vision-Language Models (VLMs) offers
promising solutions to some of these challenges. VLMs com-
bine visual perception and natural language understanding to
provide robots with the ability to interpret and reason about
high-level, often ambiguous, instructions. By integrating
language into the decision-making process, VLMs offer a
more flexible approach to task execution that allows robots to
better understand human intentions and respond to dynamic,
real-world scenarios [8].

IIT. METHODOLOGY

The proposed methodology enables autonomous book
sorting using a Franka Emika Panda robotic manipulator,
equipped with an Intel RealSense D415 depth camera for
visual perception and spatial localization. The system initial-
izes by positioning the robot at a predefined home config-
uration, ensuring the entire bookshelf and randomly placed
books fall within the camera’s field of view (FoV). Object
detection and segmentation are performed using OpenCYV,
where HSV thresholding generates a segmentation mask for
isolating books based on their dominant color. Depth data
from the RealSense camera is leveraged to compute the 3D
world coordinates of each book’s centroid.

The sorting task is formulated as a minimum-swap se-
quence optimization problem, determining the most efficient
pick-and-place sequence to achieve the desired arrangement.
To establish the “place” coordinates, the shelf is partitioned
into six designated slots, with their centroids manually
recorded by guiding the robotic arm to each location and
storing the corresponding joint configurations. Franka Emika
Panda’s built-in motion planning framework generates dy-
namically feasible, collision-free trajectories based on the
current configuration space. Each pick-and-place operation
is executed via impedance-controlled manipulation, ensuring
smooth and adaptive grasping. Upon completion of the
sorting process, a final verification step validates the correct
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placement of all books. This methodology integrates robust
perception, optimization-based sorting, and efficient motion
planning to enable precise and autonomous book organiza-
tion. Fig. 2 shows the entire system architecture in detail.
Algorithm?2 defines the Finite State Machine.

A. Hardware Setup

The hardware setup comprises a Franka Emika Panda
robotic arm, an Intel RealSense D415 depth camera, a
custom-built shelf structure, and a high-performance comput-
ing unit. The robotic arm, providing precise 7-DoF (Degrees
of Freedom) control, is securely mounted on a workstation,
ensuring accurate and stable book manipulation. The Re-
alSense D415 camera is rigidly mounted on the end effector,
facilitating both RGB and depth-based visual perception
for accurate book detection and localization. The custom
shelf structure is designed with five designated slots, each
serving as predefined target coordinates for book placement.
The system is controlled by a desktop workstation running
Ubuntu with ROS, OpenCV, and FrankaPy, enabling real-
time perception, motion planning, and execution. Power
supply units and safety mechanisms like an emergency stop
button is present to ensure reliable operation of the robotic
system.

B. Perception Subsystem

The Perception Subsystem begins by initializing the
Franka robot arm to 2 pre-defined home positions to capture
the entire scene of the shelf (top and bottom), including
the randomly placed books. A dictionary is defined to
specify the HSV (Hue, Saturation, Value) color boundaries
for three target colors—red, green and blue — ensuring
accurate segmentation. Each color range is associated with
a corresponding BGR value for visualization purposes. The
image is converted to the HSV color space, where a binary
mask is created based on the defined color boundaries.
Morphological operations such as opening and closing are
applied to remove noise and enhance the mask’s precision.

Subsequently, ROS messages for color and depth im-
ages are converted into OpenCV-compatible formats using
CvBridge to facilitate further image processing. The seg-
mentation process isolates the regions of interest (ROIs)
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corresponding to the specified colors. For each color region,
centroid calculation is performed using contour analysis to
determine the geometric center. Depth values from the depth
image are then extracted and used to back-project the 2D
pixel coordinates into 3D space based on the camera’s intrin-
sic parameters. These 3D world coordinates, along with their
corresponding color values, are published as PointStamped
messages, providing real-time spatial information. This data
is subsequently utilized by the planning node for trajectory
planning and task execution, ensuring seamless integration
of perception with motion.

C. Sortation Algorithm

The Minimum-Swap Sortation Algorithm targets the effi-
cient rearrangement of books in a shelf, for three target colors
(e.g., ’R’,’G’, ’B’) and two empty spots (denoted as None).
The primary objective is to achieve a predefined sorting order
with minimal swap actions, transforming this task into an
optimization problem that minimizes mechanical effort and
computational overhead. For a scenario like sorting books,
cyclic-sort is found to be highly efficient, non-comparative
sorting algorithm. It operates by exploiting the principle of
cyclic permutations of misplaced elements and sorting them
in-place, which is very efficient.

Before any sorting begins, we define the target order for
the books on the shelf which could be a specific sequence,
such as ['R’, °G’, ’B’]. Further, we obtain the current order

on the shelf from the perception node and traverse through
it to identify where each book is located compared to its
desired position. Each book that is not in its target position
will be involved in a cycle. Each cycle involves a set of
books that need to be swapped in a specific sequence to bring
them to their correct positions. The empty spots (None) are
utilized strategically such that when swapping books between
positions, if the target position is occupied by another book,
we can use an empty spot as a temporary holding place.
Finally the algorithm outputs a sequence of move instructions
including the pick-and-place indexes for each swap. These
instructions are transmitted to the motion planning node,
enabling seamless execution of the task with minimal phys-
ical movement and higher efficiency. Algorithm-1 provides
a comprehensive overview of the sortation workflow.

For our stretch goals, we implemented a feature to check
if the book has been grasped and placed successfully in its
respective spots. Previously, it was an open-loop operation,
but now we make sure that the book has reached its spot.
We do this by getting visual feedback from the camera and
matching that with the sequence in which the books are
supposed to be placed. Another of our stretch goals was to
dynamically sort books based on human-induced disruptions.
We were able to achieve this by checking the position of
the books after every place operation. We can then verify
this with regard to the desired position of the books in the
algorithm and redo the pick-and-place operation to achieve
the required book positions.

D. Motion Planning

The motion planning node system utilizes the sequence of
pick-and-place operations generated by the sortation algo-
rithm, where each operation includes the slot index for both
pick and place positions. To facilitate precise robot motion,
these index-based positions are transformed into real-world
coordinates. The ”place” coordinate is derived by converting
the index into 3D world coordinates, using the predefined
joint angles associated with the centroids of each slot. For
the “pick” operation, the perception node provides the 3D
coordinates of the object along with its associated color.
However, this coordinate is in the camera frame and needs to
be converted into robot’s base frame since the robot’s motion
planning function “goto_pose()” requires input this data in
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the world frame. To achieve this we perform the following
transformation (P refers to position coordinates):

P robot base = transformeamers—robot % Peamera

transformeamera—robot base = transformeamera—gripper X transformgripper—robot base

Fig. 5. Camera-frame to World-frame transformation

We obtain the transformation of the camera to robot
base using “get_pose()” function which essentially gives
the pose of end-effector in the world frame. However, the
transformation between the camera and the gripper frame
is manually calculated by measuring the translation of the
centroid of the camera relative to the gripper. The rotation
matrix is considered to remain consistent between the gripper
and the camera, as both are rigidly mounted on the gripper
and share a fixed orientation relative to the robot base.

Algorithm 1 Min-Swap Book Sorting

Require: Shelf environment with Franka Movelt controller

Ensure: Books sorted in target order with minimal swaps
1: Initialize Shelf environment

2: procedure INITIAL SCAN

3 move_to_home_2

4 get_centroids

5: move_to_home_3

6

7

8

9

get_centroids
: end procedure
. if —(red_centroid A blue_centroid A green_centroid) then
: error “Failed to get all centroids”
10: end if
11: initial order < determine_centroid_positions
12: sorter <— BookSorter(initial _order)
13: (moves, final order) < sorter.sort_books()
14: parsed_moves <+ Sort_Movelt.parse_moves(moves)
15: for each (color,initial _pos,target_pos) in parsed_moves
do

16: Calculate home_initial based on initial_pos
17: Calculate home_target based on target_pos
18: move_to_home(home_initial)

19: pickup(color)

20: move_to_home(home_initial)

21: move_to_home(home _target)

22: place(target_pos)

23: move_to_home(home_target)

24: end for

By applying these transformations, we can successfully
convert the “pick” coordinates into the world frame (robot’s
base frame). Once both the pick and place coordinates
are computed, the motion planning process can commence,
except, there is an additional step required to ensure an



optimal trajectory. Finally, the Franka arm plans an optimal
trajectory while avoiding collisions and optimizing the path
for efficiency.

IV. EVALUATION

The system was evaluated on a custom two-row shelf
comprising six equally spaced slots (15 cm center-to-center).
Each slot was populated with up to three color-coded books
(red, green, blue) in randomized initial poses. For every trial,
the target configuration was defined as [R, G, B, None, None,
None], and a total of 10 independent runs were executed,
with randomized book placements between trials.

The sort operation succeeded in 96 % of trials, with
a single failure resulting from an incomplete grasp. This
was due to an error by a miscalibrated camera-to-robot-base
transform that introduced an unintended lateral offset in the
planned gripper trajectory and caused the book to be dropped
mid-transfer. The system does not verify successful grasps at
the moment. However, we aim to include a method to verify
successful grasps in the future to avoid such failure cases.

The overall results confirm that simple HSV thresholding
yields reliable object segmentation under controlled light-
ing. The accurate computation of the 3D-world coordinates
for the book centroids supports precise pick-and-place op-
erations. The high success rate of the overall execution
demonstrates that the minimum-swap optimizer and cartesian
planner delivers efficient performance for sorting operation.

Further evaluations that would be interesting could use
more occupied spots creating more cluttered environments,
reducing the margin for error for grasps. One of our stretch
goals is to include collision boxes on the fly by incorporating
information from the perception node. These would also
allow for more complex paths between picks and place
instead of using an intermediary home position.

V. CHALLENGES

Our implementation encountered several significant tech-
nical obstacles during development. We faced persistent
difficulties with the RRT-Connect motion planning algorithm,
which frequently failed to generate any viable path plans.

Algorithm 2 Finite State Machine
1: Global State:
2:  shelf: Array[6] > Current book positions
3 target_order = [r, g, b, None, None, None] >

Example Position

4:  moves: List
5: function FINDEMPTYSPOTS
6: return [i | i € 0..5, shelf[i] = None]
7
8
9

> Action recording

: end function
: function FINDBOOK(target_color)
: for i + 0 to 5 do
10: if shelff[i] = target_color then

11: return i

12: end if

13: end for

14: return -1 > Not found

15: end function
16: procedure MOVEBOOK(source, destination)

17: book < shelf[source]

18: shelf[source] <+— None

19: shelf[destination] < book

20: APPEND(moves, “Move {book} from {source+1} to

{destination+1}"))
21: end procedure
22: function SORTBOOKS
23: for target_pos <— 0 to 5 do

24: target_color < target_order[target_pos]

25: if target_color = None then continue

26: current_pos <— FINDBOOK(target_color)

27: if current_pos = target_pos then continue
28: if shelf[target_pos] = None then

29: MOVEBOOK(current_pos, target_pos)
30: else

31 empty_spots <— FINDEMPTYSPOTS
32: temp_pos < empty_spots[0]

33: MOVEBOOK(target_pos, temp_pos)
34: MOVEBOOK(current_pos, target_pos)
35: end if

36:

37: return (moves, shelf)

38:

We ended up using a cartesian planner to alleviate these
issues. The hand-eye calibration presented another major
challenge when we discovered the provided transformation
matrix contained inaccuracies, requiring us to manually mea-
sure the physical distance between the camera and the robot’s
end effector to get the proper transformation to convert the
centroid of the book in end effector space from camera
coordinates to robot base frame. We also struggled with
overly restrictive virtual wall configurations that had been set
well within the robot’s actual working boundaries, severely
limiting movement and triggering unnecessary safety stops.

VI. FUTURE WORK

In future iterations of our system, we aim to implement
a one-shot continuous path planning strategy that eliminates



unnecessary intermediate steps, such as returning to a prede-
fined home position between actions. Achieving this requires
real-time, dynamic updates to the configuration space (C-
space) at each planning checkpoint. Specifically, we plan to
integrate continuous feedback from the perception module,
which provides updated centroids for all objects within the
environment. This will allow the planner to accurately reflect
the current state of the workspace. During each task step,
the object being manipulated (e.g., a specific book) will
be excluded from collision consideration, while the remain-
ing objects will be incorporated into the planning space
as obstacles using the addbox() function. This approach
is expected to improve planning accuracy and execution
efficiency by maintaining a realistic and responsive model
of the environment throughout task execution and we hope
to implement this in the future.

VII. CONCLUSIONS

In this work, we have presented a fully integrated robotic
sortation system that combines perception, motion planning,
and a minimum-swap sorting strategy to autonomously or-
ganize books on a shelf in a semi-structured environment.
By leveraging the Franka Emika Panda robotic arm and
Intel RealSense RGBD camera, our system is capable of
accurately detecting and localizing objects, optimizing the
sequence of operations, and executing precise pick-and-place
actions in real-world conditions. The proposed minimum-
swap algorithm effectively reduces redundant motions, lead-
ing to improved operational efficiency and minimal mechan-
ical effort.

Our results demonstrate the viability of color-based seg-
mentation and cyclic sort-based planning for real-time ma-
nipulation tasks in structured shelf environments, offering a
promising approach to scalable robotic automation. More-
over, the modular architecture allows for future extensions,
including the incorporation of more complex object cate-
gories, dynamic re-planning under uncertainty, and learning-
based perception or control methods.

This work moves toward practical robotic automation
by bridging academic research and industrial deployment.
Future directions include semantic reasoning for generalized
sorting, robustness under occlusion, and scaling to multi-
object, multi-arm tasks in dynamic settings.
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